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Summary

1. Estimates of mortality are fundamental to studies of population ecology and assessments of conservation sta-

tus. Mortality is frequently estimated using individual identifications by means of mark–recapture methods.

These estimates become biased with heterogeneity in identification and especially if patterns of heterogeneity

change with time.

2. If animals are social, then survival may be inferred from the identifications of social partners. We produce a

likelihoodmodel for estimatingmortality using such social data.

3. We show using simulation that this method can produce less biased and more precise estimates of mortality

than standard methods when individuals are almost always identified with associates, and when there are time-

varying patterns of heterogeneity in identifiability. The method seems little affected by some change in social

affiliations or by growth or decline in population size. SEs and confidence intervals of mortality estimates can be

estimated using likelihood methods. We apply the method to data from a population of sperm whales (Physeter

macrocephalus) in the eastern Caribbean, obtaining estimates that are more precise and probably less biased than

those from othermethods.

4. Themethod should be useful in improvingmortality estimates for social species.

Key-words: likelihood, management, mark-recapture, Physeter macrocephalus, population

parameters, social organization, status, stock assessment, survival

Introduction

Mortality (or survival, its inverse) is one of the two key

elements of population biology, along with reproduction.

Thus, estimates of mortality are vital for assessing the status

and potential increase in population. For wild vertebrates, sur-

vival or mortality is usually estimated either from age distribu-

tions – ‘life tables’ – or records of time series of observations of

individually identified animals (Murray & Patterson 2006).

However, in some circumstances, usefully precise estimates of

mortality are hard to achieve. For instance, when animals are

nomadic with large ranges, and so have loose, variable or

unpredictable ties to any geographical area, then the absence

of an animal from a study area could be due to either mortality

or movement into a less sampled range. In such cases, esti-

mates of survival from individual identifications using mark-

recapture methods become confounded with temporary or

permanent emigration, and consequently imprecise, and

perhaps biased.

The ‘robust’ mark-recapture design in which short sampling

sessions are embedded within longer separated sampling peri-

ods is one way to address such emigration (Pollock 1982).

However, the robust design makes several assumptions that

may not be realistic in some situations: the population is

assumed closed within sampling periods, and movement into

and out of the study area is atmost a one-stepMarkov process,

with the probability of moving out of the study area being con-

stant for all animals inside it, and the probability of moving

into the study area being equal for all animals outside it. For

many animals, perhaps especially nomadic ones, whose forays

into different areas can be either short or long term, these

assumptions are problematic. Furthermore, the structure of

the robust design, with its interspersed short samples, may not

be logistically feasible.

An alternative approach is based upon sociality. If animals

have strong social affiliations, then potentially these can be

used to improve assessments of the fate of a non-sighted ani-

mal. In particular, when the animals form persistent social

units that largely travel together, then the presence of the unit

without a particular animal can be a strong indication of mor-

tality. If the units are entirely closed, then good inferences

about mortality are obtained quite simply from missing obser-

vations of unit members. This approach has been used very

effectively when studying the demography of ‘resident’ killer

whales (Orcinus orca L.) in the eastern North Pacific (Olesiuk,

Bigg & Ellis 1990). However, temporary or permanent migra-

tion between units, or unit fission, may need to be taken into

account inmany cases.

These are all issues with the sperm whale (Physeter macro-

cephalus L.), one of the most ecologically and economically*Correspondence author. E-mail: hwitehe@dal.ca
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important of mammal species (Whitehead 2003). Despite

considerable work on the population biology of the species,

especially during the last phase of commercial whaling in the

1970s and early 1980s, estimates of mortality are extremely

poor (Chiquet et al. 2013). However, female and immature

sperm whales travel in fairly permanent social units (White-

head 2003), albeit with occasional interunit movement (Chri-

stal, Whitehead & Lettevall 1998), so there may be potential

in using the dynamic membership of identified units to

improve our mortality estimates. It is this potential that we

explore.

We develop a fairly general method that does not include a

particularmodel of social structure. It assumes that individuals

travel with, and tend to be identified with, a set of associates

and that each time unit they have a probability of changing

associates, as well as a probability of mortality. We use likeli-

hood models to estimate these probabilities, as well as their

standard errors (SEs). We compare the performance of the

method with more standard mark-recapture methods using

simulated data. We use the simulations to examine bias, error,

as well as the potential effects of social fluidity and systematic

changes in population size.We also use the method to estimate

mortality for a sperm whale population from the eastern

Caribbean.

Materials andmethods

THE GENERAL POPULATION AND SAMPLING MODEL

We assume that all members of the population have a uniform instan-

taneous rate of mortality at a per time unit and of changing their set of

social associates at b per time unit. The population itself can be increas-

ing, stable or decreasing with a constant rate of increase or decrease.

Sets of associates are assumed transitive so that if in any time unit i and

j are associates, and j and k are associates, then i and k are also

associates.

Identification of individuals takes place during short (compared

with the time units of mortality and associate change) field seasons

that occur at most once per time unit. There is also available a

measure of identification effort for an animal or a set of animals in

each field season. (In the sperm whale illustration, we use the num-

ber of days on which one or more of these animals were identified,

but there are other possibilities.) During the field season in time

unit y, the probability that an individual, i, is identified is zero if

not alive. If alive and with known associates, the probability of

identification is P(di,y) where the effort directed to i’s known associ-

ates in field season y is di,y, and, more generally, q(y) if its associ-

ates are unknown. We assume that when an individual is identified

in any time unit, a set of associates can be determined from the

identification record, although this identified set of associates may

be incomplete.

L IKEL IHOOD OF DATA SET

In this subsection, we show how to approximate the likelihood of the

data set. We assume there are no time units in which individuals are

identified but without associates (or simply omit these data). We also

ignore the possibility of individuals leaving a set of associates and then

returning to be with thembetween two identifications.

Consider each interval between successive identifications of an indi-

vidual i: yi,t to yi,t+1. If we condition on its observation in yi,t, the

probability that it is next identified in time unit yi,t+1, and it has the

same associates in both time units, is:

p i; tð Þ ¼ e�ðaþbÞ yi;tþ1�yi;tð ÞP di;yi;tþ1

� �Yyi;tþ1�1

a¼yi;tþ1
1� P di;a

� �
eqn 1

On the right of the equation, the firstmultiplicative term is the proba-

bility that the individual survives over the time interval and does not

switch associates, the second that it is identified in time unit yi,t+1, and

the third a product of the probabilities that it is not identified during

the intervening time units.

Again conditioning on its observation in yi,t, the probability that

it is next identified in time unit yi,t+1, but it has different sets of asso-

ciates in the two time units, is (c is the time unit when it switched

associates):

p i; tð Þ ¼ e�a yi;tþ1�yi;tð Þ 1� e�b
� �

qðyi;tþ1Þ
Xyi;tþ1

c¼yi;tþ1
e�b c�yi;t�1ð Þ

Yc�1

b¼yi;tþ1
1� P di;b

� �Yyi;tþ1�1

a¼c
1� qðaÞ

eqn 2

Here, the first term on the right is the probability of survival, the sec-

ond the probability that it switches associates, and the third that it is

identified in time unit yi,t. This is multiplied by a summation, over c, of

the product of the probabilities that it does not switch associates before

c and is not identified before or after c.

Now, consider the period from the last time unit in which iwas iden-

tified, f(i) until the end of the study in time unitT. If it does not die, and

does not switch companions, the probability of this sequence (removing

the secondmultiplicative term from eqn 1) is:

pði; fðiÞ;�;�Þ ¼ e�ðaþbÞ�ðT�yi;fðiÞÞ
YT

b¼yi;fðiÞþ1
1� Pðdi;bÞ eqn 3

If it does not die, but does switch companions in time unit c, the

probability (removing the thirdmultiplicative term from eqn 2) is:

pði; fðiÞ;�;þÞ ¼ e�aðT�yi;fðiÞÞð1� e�bÞ
XT

c¼yi;fðiÞþ1
e�bðc�yi;fðiÞ�1Þ

Yc�1

b¼yi;fðiÞþ1
1� Pðdi;bÞ

YT

a¼c
1� qðaÞ

eqn 4

If it does die, in time unit d, but does not switch companions, the

probability is:

pði; fðiÞ;þ;�Þ ¼ 1� e�að Þ
XT

d¼yi;fðiÞþ1
e�ðaþbÞðd�yi;fðiÞ�1Þ

Yd�1

b¼yi;fðiÞþ1
1� Pðdi;bÞ

eqn 5

Here, the first term is the probability of mortality. This is multi-

plied by a summation, over d, of the product of the probabilities that

it does not die or switch associates before d and is not identified

before d.

If it does die, in time unit d, and does switch associates in time unit c

(<d), the probability is:

p i; f ið Þ;þ;þð Þ ¼ 1� e�að Þ 1� e�b
� �XT

d¼yi;f ið Þþ1
e�a d�yi;f ið Þ�1ð Þ

Xd�1

c¼yi;fðiÞþ1
e�b c�yi;f ið Þ�1ð ÞYc�1

b¼yi;fðiÞþ1
1� P di;b

� �

Yd�1

a¼c
1� qðaÞ

eqn 6

This combines eqns 2 and 5.

Then, the total probability of individual i not being identified after

time period f(i) is, using eqns 3–6:
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pði; fðiÞÞ ¼ pði; fðiÞ;�;�Þþ pði; fðiÞ;þ;�Þþ pði; fðiÞ;�;þÞ
þ pði; fðiÞ;þ;þÞ eqn 7

The log-likelihood of the data, conditioning on when individuals

were first identified and when associates were identified, is then (using

eqns 1, 2 and 7):

L ¼
X

i

Xf ið Þ
t¼1

Logðp i; tð ÞÞ eqn 8

Here, the first summation is over individuals, and the second over

each time interval between successive identifications of the individual,

including the interval from the last identification to the end of the study

(if the individual was not identified during the final time unit).

Then, a, b and the parameters that determine the identification func-

tions P and q can be estimated by maximizing the log-likelihood, L.

SEs and confidence intervals for these parameter estimates can be esti-

mated from the shape of the likelihood functions.

We note that, because of the social structure of the population, the

likelihoods of the sighting histories of the different individuals are not

independent. This should not much bias the parameter estimates

(Whitehead 2001), but may invalidate confidence intervals derived

from the support function.We examine these issues using simulation.

For identification functions, we used:

PðdÞ ¼ 1� ð1� fÞd eqn 9

Here, f is the probability of identifying an individual per unit of

effort directed at its associates (in our case, the number of days in that

field season during which one or more of its associates were identified),

assuming effort units are independent. We examined other, more com-

plex functions for P, but none fitted our sperm whale data as well (as

indicated byAIC) as this function.We also used:

qðyÞ ¼ g � nðyÞ=maxðnðy0ÞÞ eqn 10

where n(y) is the total number of animals identified in time unit y, and

themaximum is over all time units {y′}. This assumes that, if there is no

information on social associates, the probability of identifying a

particular individual in a time unit is proportional to the total number

of individuals identified in that time unit. Thus, f and g are the identifi-

cation rate parameters estimated by maximum likelihood. Both are

constrained to be in the interval [0,1].

We also consider a model, with an additional parameter, in which

the population has an annual exponential growth of r (which could be

negative giving an exponential population decline), so modifying

eqn 10 for an exponentially increasing/decreasing population:

qðyÞ ¼ g � nðyÞ � er�ðy�yð0ÞÞ=maxðnðy0ÞÞ � er�ðy0�yð0ÞÞ eqn 11

SIMULATED DATA SETS

To examine the performance of our proposed ‘sociality’ estimator of

mortality, we simulated populations of social animals. We call the time

units of the simulations ‘years’ within which there are ‘days’. The ani-

mals occur in social groups and may die (at a rate of a per year) or

change groups (at a rate of b per year). Each death is replaced by a new
individual whose group membership is chosen randomly from those of

the animals still alive (so, the overall population size, but not group

sizes, is stable). When animals switch groups, the new group is chosen

with equal probability from all other groups in the population. Sam-

pling occurs on different days (which are the units of effort used in cal-

culating d) within time units, and the probability that an individual is

identified on a day when its group is present is f. Two individuals are

considered to be associated if they are identified from the same group

on the same day.

We then simulated four sampling schemes (illustrated in Fig. 1):

1. Random variation in group identification rates over years (‘group–

year’): Each group, u, in each year, y, is given an identifiability, v(u,y), a

random variable chosen from the uniform distribution in the interval

[0,20]. The number of days that group u is identified in year y is a Pois-

son-distributed random variable with mean v(u,y). These data fit the

model assumed by the standardmark–recapture methods of estimating

mortality (except for dependence in sampling rates among group

members).

Fig. 1. Illustration of sampling schemes. The

areas of the discs indicate the probability of

being able to identify any of the 20 groups

(rows) over 10 consecutive time periods (col-

umns) for four sampling schemes (blocks).
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2. Variation in group identification rates (‘group’): Each group is given

an identifiability, v(u), a random variable chosen from the uniform dis-

tribution in the interval [0,20]. In each year, y, the number of days that

the group is identified is a Poisson-distributed random variable with

mean v(u). This variation in identifiability among groups, and thus indi-

viduals within the population, is a situation that the mixture methods

of Pledger, Pollock&Norris (2003) attempt tomodel.

3. Variation in group identification rates plus group-specific trends

(‘group–trend’): In each year, y, the number of days that group u is

identified is a Poisson-distributed random variable with mean v

(u)�(1+2w(u)�(y/(T � y(0)) � 0�5)), where v(u) is uniform in the inter-

val [0,20] and w(u) is uniform in the interval [0,1]. This scenario, in

which members of a particular group may be more or less relatively

identifiable at the beginning or end of the study, violates the assump-

tions for standard,mixture and robustmodels.

4. Variation in group identification rates plus strong group-specific

trends (‘group–trend3’): In each year, y, the number of days that group

u is identified is a Poisson-distributed random variable with mean

v(u)�(1+2w(u)�(y/(T � y(0)) � 0�5))3, where v(u) is uniform in the

interval [0,20] and w(u) is uniform in the interval [0,1]. This is a more

extreme version of scenario 3 and severely violates the assumptions for

standard,mixture and robustmodels.

These simulations were used to examine several issues:

Comparemethods of estimatingmortality

Initially,the parameters of the simulation roughly followed those of the

eastern Caribbean sperm whale population (Gero et al. in press):

10 years of study (time units), 20 groups, initial group sizes (year 1)

Poisson distributed with mean 10, mortality rate a = 0�03 per year, no
switching of groups (b = 0). To give different rates at which individuals

were identifiedwith social associates, themodel was runwith a range of

values of the probability of identifying animals on days when their

group was present (f = 0�1, 0�14, 0�2, 0�3 or 0�45), which correspond,

roughly, to the proportion of animals identified with associates in each

year being in the range 0�2–1�0. For each of twenty runs for each of the

four sampling scenarios and five values of f,we calculated the truemor-

tality in the data set and estimated mortality using a standard likeli-

hood model allowing mortality with two parameters (population

size and mortality), Pledger, Pollock & Norris (2003) mixture model

allowing heterogeneity of identifiability, as modified by Whitehead &

Wimmer (2005), as well as the sociality model introduced in this article.

For each run, and each population estimation technique, we calculated

the percentage bias in estimated mortality 100�(estimated mortal-

ity � true mortality)/true mortality and plotted this bias against the

proportion of times animals were identified with associates (excluding

the few occasions when an individual was identified in a year without

associates, but two or more associates from its previous identification

were identified separately). To investigate the generality of our results,

we also carried out these simulations with different sets of input param-

eters (columns three and four in Table 2; five runs with each set of

parameters).

Examine effects of group switching

In these runs, parameters were as just outlined, except we only used

f = 0�45, and rates of switching groups of b = 0�01, 0�02, 0�03 and 0�04
per year were introduced. Using 20 runs for each set of parameters, we

examined how group switching changed the estimates of mortality

using the sociality model, as well as the performance of the model in

estimating b.

Examine effects of growth in population size

In these simulations, we were interested in the effects of an increasing

or decreasing population on the estimates of mortality. The population

growth rates used were �0�03, 0, 0�03, 0�06 and 0�09 per period. Thus,
instead of replacing deaths with the same number of new individuals at

each time period, we replaced themwith a number allowing the popula-

tion to grow or shrink at the given exponential rate. (The number of

new animals in period y was thus n(0)�er(y�y(0)) � ns(y) where r is the

trend and ns(y) is the number of survivors after mortality in period y.)

In these runs, we estimated mortality using versions of each model that

included a growth term, as well as the standard, heterogeneity and

socialitymodels.

Standard error estimates

The social relationships within these populations theoretically invali-

date the independence assumption of the likelihood calculations, and

thus, the validity of measures of confidence calculated using it. How-

ever, it is only the sighting histories that are dependent, not the mor-

talities themselves. Thus, we used simulation to check the possibility

that SEs for parameter estimates can be estimated from the informa-

tion matrix (the inverse of the negative second derivative of the likeli-

hood function at the maximum likelihood estimator). For three sets

of parameters (those used to compare the methods of estimating mor-

tality, above, but only using the group–trend3 sighting scheme and

f = 0�45), we compared the standard deviation of sociality estimates

of mortality from 1000 runs of the model (2000 runs in one case), with

the mean of the SE estimates from each run calculated using the

information matrices (square root of the corresponding diagonal

elements).

We also examined the utility of estimating confidence intervals from

the likelihood support function, where the likelihood of the data for a

particular value of a particular parameter (optimizing over the other

parameters) drops below 1�92 (this is half the 95% percentile of the

cumulative distribution function for the chi-squared distribution with

1 d.f.) from the maximum likelihood (Venzon&Moolgavkar 1988). In

this case, the true confidence interval of the estimation was estimated

by the range between the 2�5% and 97�5% percentiles of the estimates

of mortality for 1000 (or 2000) runs of the simulation with the original

set of parameters (only using the group–trend3 sighting scheme and

f = 0�45). This span was compared with the mean upper and lower

95% confidence intervals estimated by the likelihood support method

from the first 100 of these runs.

SPERM WHALE DATA

The sperm whale data come from photoidentification studies of the

neighbouring islands of Dominica and Guadeloupe in the eastern

Caribbean carried out by teams from Dalhousie University, the Inter-

national Fund for Animal Welfare, the Ocean Research and Explora-

tion Society, and l’Association Evasion Tropicale between 1984 and

2012, although the great majority (89%) of the identifications come

from research undertaken by teams from Dalhousie University

between 2005 and 2012. Photo-identification followed the methods

described by Arnbom (1987). We omitted all identifications of young

calves, adult males and photographs with quality Q < 3 (as defined by

Arnbom 1987).

We use time units of one calendar year, and units of effort within

field seasons are the number of days on which animals were photoiden-

tified.We considered animals to be associates during a year if identified

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 5, 27–36

30 H. Whitehead & S. Gero



within 2 h of one another; however, we alsomade estimates with a 12-h

cut-off (i.e. animals associated if identified on the same day, as identifi-

cation only occurred between 06:00 and 18:00). As with the simulation

studies, we estimated mortality using the standard, heterogeneity and

sociality methods, as well as versions of these models with a population

trend added. SEs and confidence intervals were estimated from the

information matrix and shape of the support function, as with the

simulated data.

Results

COMPARISON OF METHODS OF ESTIMATING MORTALITY

The performance of the different methods of estimating

mortality is illustrated in Fig. 2. As expected, with the first

‘group–year’ sampling scheme where there are no systematic

differences between groups in identifiability, the standard

mark-recapture model performs well, estimating mortality

with little bias. The mixture model including heterogeneity in

identifiability performs similarly. However, the other sam-

pling schemes that include systematic differences in identifi-

ability between groups lead to substantial overestimates of

mortality by the standard model. With the ‘group’ sampling

scheme, where the differences in group identifiability are

fixed, the heterogeneity model does a good job of reducing

bias. But when there is a temporal trend in the group-specific

bias, as in the group–trend and especially the group–trend3

sampling schemes, then both the standard and heterogeneity

models have a substantial positive bias. In contrast, the

sociality model that we have introduced gives highly posi-

tively biased estimates when there are low rates at which ani-

mals are identified with associates, but extremely accurate,

and almost unbiased, ones when this rate is above about

0�80. This pattern varied little between sampling schemes.

Runs with different parameters gave generally similar results

(see Figs S1 and S2). Combining results for all runs with dif-

ferent combinations of parameters (but without changes of

group membership), and individuals identified with associ-

ates at least 80–96% of the time (to correspond roughly with

sperm whale results, see below), produced the biases and

root-mean-squared errors displayed in Table 1. The standard

model is best when its assumptions hold, but the sociality

model performs consistently well in a wide range of condi-

tions and much better than the standard model when its

assumptions were violated. The heterogeneity mixture model

deals with fixed differences in identifiability between groups,

but does not perform well when these vary with time.

EFFECTS OF GROUP SWITCHING

The effects of group switching on the estimates of mortality by

the sociality model are indicated by the results of the simula-

tions plotted in Fig. 3.While the estimates ofmortality become

rather less precise as the rate of group switching approaches

and then exceeds the mortality rate, the bias changes little. The

estimated rates of group switching from the sociality model are

generally positively biased within the range of parameters that

Fig. 2. Percentage bias in estimatingmortality using three differentmethods (colours) on data sampled in the fourways illustrated in Fig. 1 (panels),

plotted against the proportion of occasions individuals were identified with associates (x axis). Each dot represents one run of the simulation pro-

gramme, and curves fitted using the cubic spline are shown for each combination of sampling scheme andmark-recapturemethod. Other parameters

for these simulations are a mean group size of 10, 10 years of study (time units) during each of which each group was identified on an average of

10 days (although the distribution of these probabilities varied with sampling scheme), 20 groups, mortality rate 0�03 per year, and no switching of

groups. There were five runs with each of the following values of the probability of identifying animals on days when their group was present:

f = 0�1, 0�14, 0�2, 0�3 or 0�45. Results of two sets of runs with other parameters are shown in the Figs S1 and S2.
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we explored, but the percentage bias decreases with the rate of

switching (Fig. 4).

EFFECTS OF GROWTH IN POPULATION SIZE

Increases or decreases in population size introduced biases into

the standard and heterogeneity methods of estimating mortal-

ity (Fig. 5). Adding growth parameters to these models

reduced this bias, as they are supposed to do. In contrast,

estimates of mortality from the sociality model were not

noticeably affected by population increase or decrease, and

adding a growth term to this model (eqn 11) gave little or no

benefit. Estimates of population growth rate from the mortal-

ity plus growth, and heterogeneity plus growth, methods were

useful and little biased, while that from the sociality plus

growth method did not give useful estimates of population

growth (Fig. 6).

STANDARD ERROR ESTIMATES

For each of our three sets of parameters, the standard devi-

ation of sociality estimates of mortality from 1000 (or 2000)

runs of the model was similar to the mean of the SE esti-

mates from each run derived from information matrices,

and the 2�5–97�5% span of 1000 (or 2000) mortality esti-

mates was similar to the mean-estimated 95% confidence

intervals (Table 2).

SPERM WHALE DATA

The sperm whale data set contained 7626 identifications of

267 individuals. Sperm whales were identified with associ-

ates 87% of the time (89% of the time with a 12-h cut-off

for association). The sperm whale data support heterogene-

ity of identification within the population, as well as increas-

ing trend in the population size (Table 3), as found by

Gero et al. (2007) for their analysis of the 1995–2006 data.

The sociality model gives a similar, but slightly more pre-

cise, estimate of mortality compared with the heterogeneity

model. In contrast to the simulations, the sociality plus

trend model appears to give a slightly better fit than the

sociality model alone, perhaps because the real sperm whale

data span a longer period than the simulated data, although

it is less precise. Estimates of mortality with the 12-h cut-off

for the association between two animals are less precise

than those with the 2-h cut-off, probably because the 2-h

cut-off represents the true social dynamics in this population

more accurately. The sociality model with the 2-h cut-off

Fig. 3. Percentage bias in estimatingmortality

using the sociality method on data sampled in

the four ways illustrated in Fig. 1 (panels),

plotted against the rate at which individuals

switched groups. Each dot represents one run

of the simulation programme, and curves fit-

ted using the cubic spline are shown. Other

parameters for these simulations are as in

Fig. 2 except we only used f = 0�45.

Table 1. Mean percentage bias and root-mean-square error (RMSE) in the estimation of mortality using simulated data in which individuals were

identified with associates during an average of 80–96% of the samples. Results are summarized for each of four sampling schemes (rows) and three

estimationmodels (columns)

Estimationmodel

n

Standard Heterogeneity Sociality

Sighting scheme %Bias (%RMSE) %Bias (%RMSE) %Bias (%RMSE)

Group–year 42 4�7 (13�7) 3�2 (14�1) 9�6 (18�7)
Group 48 20�4 (26�9) 8�1 (16�7) 8�0 (18�7)
Group–trend 44 34�5 (43�0) 24�0 (31�6) 15�4 (23�0)
Group–trend3 56 62�2 (70�4) 53�6 (61�7) 12�4 (22�3)
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estimates sperm whale mortality at 0�044 per year (95% CI

0�028–0�065).

Discussion

The sociality method that we have introduced is useful, in

the sense that it produces superior mark-recapture estimates

of mortality to standard methods in some circumstances.

These circumstances are that individuals have long-lasting

social relationships that lead to repeated associations, that

usually when an individual is identified, one or more of its

associates are also identified, and that sets of individuals

have systematic differences in their identifiability that may

change over time. Individual variation in identifiability leads

to a positive bias in standard mark-recapture methods of

estimating mortality, and if this variation in identifiability

Fig. 4. Percentage bias in estimating the rate

at which individuals switch groups using the

sociality method, using the same simulations

illustrated in Fig. 3 (excluding those with no

switching). Each dot represents one run of the

simulation programme, and curves fitted using

the cubic spline are shown.

Fig. 5. Percentage bias in estimatingmortality

using six different methods (colours) on data

sampled in the four ways illustrated in Fig. 1

(panels), plotted against the rate at which the

population was shrinking or growing (slightly

jittered so the dots do not overlay one another

too much). Each dot represents one run of the

simulation programme, and curves fitted using

the cubic spline are shown. Other parameters

for these simulations are as in Fig. 2 except we

only used f = 0�45.
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trends with time, the mixture models that incorporate heter-

ogeneity in identifiability (Pledger, Pollock & Norris 2003)

do not remove much of the bias. In contrast, the sociality

model, when its conditions hold, is nearly unbiased. This is

intuitive, as the sociality model is fundamentally assessing

mortality on the basis of whether or not an animal is

identified when its associates are identified and so complex

patterns of heterogeneity in identifiability between groups of

associates are factored out.

The model that we have used is not the only way that social-

ity could be incorporated into the studies of survival. For

instance, in some circumstances, group membership could be

inferred reliably and entered into the population model

directly, and the probability that an animal is not identified

could be modelled in a range of ways that better approximate

the perceived manner in which the availability of social groups

of animals interacts with the effort put into identifying them.

We have tried to introduce a fairly generic method that will

approximate a range of situations in which animals form long-

lasting social groups, move between groups occasionally, and

have variable patterns of availability with the identification

process that is itself variable with time. In some preliminary

explorations, the method that we have presented here

Fig. 6. Estimates of the rate at which the pop-

ulation is declining or increasing using three

different methods (colours) plotted against the

true rate (slightly jittered so the plots do not

overlay one another toomuch), using the same

simulations illustrated in Fig. 5. Each dot rep-

resents one run of the simulation programme,

and the dashed lines represent unbiased esti-

mation. The dashed line represents the ideal

situation when the estimated rate equals the

two rate, and linear regressions are shown for

themortality and heterogeneitymodels.

Table 2. Efficacy of likelihood estimates of SE and 95% confidence

intervals of mortality estimates for three sets of parameters. The distri-

butions of themortality estimates from the different runs are compared

with the mean of the estimates of SE and 95% confidence intervals

from likelihood. Each set of runs (columns) used the group–trend3

sampling scheme and f = 0�45

Model parameters as in simulations of

Figure 1 Figure 1A Figure 2A

Simulation runs 1000 2000 1000

Mean group size 10 5 15

No. of groups 20 30 10

No. of periods 10 15 10

Truemortality 0�03 0�08 0�15
SD(estimates) 0�0050 0�0081 0�0179
Mean

(estimated (SE))

0�0049 0�0078 0�0164

2�5–97�5%estimates 0�0218–0�0415 0�0718–0�1033 0�1356–0�1900
Mean(95%CI) 0�0223–0�0413 0�0727–0�1029 0�1320–0�1876

Table 3. Estimates of mortality (per year) of sperm whales in the east-

ern Caribbean Sea, using a simple likelihoodmodel, Pledger, Pollock&

Norris’s (2003) mixture model incorporating heterogeneity in identifi-

ability, and the sociality model (with association defined based on 2- or

12-hmaximumdifference in identifications), as well as versions of these

models that incorporate a trend in population size. Also shown are esti-

mates of the SEs of the estimates from the information matrix, 95%

confidence interval from likelihood support function and the AIC.

Because of the differences in the data used, AICs from the sociality as

well as the sociality plus trend models are not comparable with those

from other models, nor can we compare AICs from sociality models

with different definitions of association (as indicated by the horizontal

lines separating these AIC values)

Model

Mortality

(per year) SE 95%CI AIC

Standard 0�1210 0�0134 0�0961 0�1486 1643�6
Standard plus trend 0�0907 0�0136 0�0655 0�1186 1614�1
Heterogeneity 0�0479 0�0108 0�0288 0�0713 1529�1
Heterogeneity

plus trend

0�0259 0�0099 0�0091 0�0478 1496�7

Sociality (2 h) 0�0440 0�0094 0�0279 0�0646 1043�7
Sociality plus

trend (2 h)

0�0372 0�0110 0�0050 0�0585 1039�5

Sociality (12 h) 0�0567 0�0106 0�0380 0�0791 1257�9
Sociality plus

trend (12 h)

0�0481 0�0127 0�0086 0�0718 1252�4
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performed similarly to more constrained methods tailored

directly to specific situations.

However, themethod should not be used as a ‘black-box’ on

new data sets with very different characteristics to those investi-

gated in our simulations. Because the method is quite com-

puter intensive, we could only investigate its performance over

a small region of parameter space, and sociality is typically

multidimensional. It may be that in other situations different

likelihood models will be more appropriate. However, our

work does show that social information can help reduce bias

and improve the precision of mark-recapture estimates of

mortality.

Estimates of mortality have little utility without some kind

of measure of precision. Our simulations indicate that SE

and confidence interval estimates calculated using the shape

of the likelihood function are reasonably good. The non-

parametric bootstrap, a frequently used and often recom-

mended method of estimating confidence in parameter

estimates (Efron & Gong 1983), is not applicable for social

data, because, with resampling, there will be animals with

identical sighting histories, and this will artificially boost

social relationships (Whitehead 2008). The parametric boot-

strap, which requires an explicit model of the process being

modelled, will be hard to implement with complex societies

and sighting schemes. The jackknife method, in which

‘pseudovalues’ are constructed by omitting segments of the

data in turn (Efron & Stein 1981), is one method likely to

work with the kinds of data that we are addressing. Preli-

minary analyses, omitting either individuals or groups of

individuals formed using Newman’s (2006) eigenvector mod-

ularity method, suggested that the jackknife method pro-

duces acceptable measures of confidence in the sociality

estimates of mortality. However, they were not clearly better

than the simpler and less time-consuming likelihood mea-

sures used above.

Our development of this method was sparked by the

need to obtain better estimates of mortality for female and

immature sperm whales, which have been notoriously

imprecise (Chiquet et al. 2013). The Scientific Committee

of the International Whaling Commission estimated annual

mortalities of 0�066 per year for males, 0�055 per year for

females, and 0�093 per year for infants, using the age or

length distribution of the catches (International Whaling

Commission 1982). These estimates thus include whaling

mortality and are compromised by uncertainties in the

standard method of ageing sperm whales from tooth sec-

tions. More recent mark-recapture estimates for female

and immature sperm whales using photoidentifications are

very imprecise: 0�021 per year (SE 0�066 per year) in the

eastern tropical Pacific (Whitehead 2001) and 0�094 per

year (95% CI 0�035–0�169 per year) in the eastern Carib-

bean (Gero et al. 2007). The sociality model does give bet-

ter estimates (Table 3) although they are not very much

better than those from the heterogeneity model employed

on the same data set. That the two methods produce quite

similar estimates is reassuring. In the case of the sperm

whale, the greatest benefits of the new method are

probably yet to come. There is a large data set of photo-

identifications of sperm whales from the eastern tropical

Pacific, the more recent parts currently being analysed,

where the population is considerably larger than that in

the eastern Caribbean. However, there has been consider-

able redistribution by the animals in this population over

the past two decades over thousands of kilometres, and

patterns of photo-identification effort are very different in

different study areas scattered over their large range

(Whitehead et al. 2008). This invalidates the standard and

heterogeneity methods of estimating mortality, but the

sociality method should work. This new method will give

more precise and less biased estimates of a much needed

population parameter, leading to better management and

conservation of wide-ranging species, which can be difficult

to sample representatively.
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Supporting Information

Additional Supporting Information may be found in the online version

of this article.

Fig. S1. Percentage bias in estimating mortality using three different

methods (colours) on data sampled in the four ways illustrated in Fig. 1

(panels), plotted against the proportion of occasions individuals were

identifiedwith associates (x axis).

Fig. S2. Percentage bias in estimating mortality using three different

methods (colours) on data sampled in the four ways illustrated in Fig. 1

(panels), plotted against the proportion of occasions individuals were

identifiedwith associates (x axis).

Data S1.MATLAB script that performs the sociality analysis.
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