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Studying the ontogeny of vocal behavior is crucial to understanding the roles that
various factors, such as social influence or acoustic environment, play in the develop-
ment of normal adult vocal repertoires. The literature on vocal development during
ontogeny in marine mammals is scant and largely restricted to captive studies, most
likely due to the difficulty of definitively identifying vocalizations from young ani-
mals that are often closely associated with their mothers or other adults. However, we
do know that dolphins can whistle at birth (Caldwell and Caldwell 1979), and that
beluga whales (Delphinapterus leucas) vocalize with pulsed trains within an hour after
birth (Vergara and Barrett-Lennard 2008). We also know that a neonatal male
Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) was first recorded
echolocating 22 d postnatal (Li et al. 2007), and two male bottlenose dolphins were
recorded echolocating in their fourth postnatal week (Reiss 1988). In one study on
bottlenose dolphins, adult females increased their rates of signature whistle produc-
tion by a factor of ten following the birth of a calf, possibly facilitating the imprint-
ing of the mother’s vocal characteristics (Fripp and Tyack 2008). Mother-offspring
recognition is likely important in such species where there is either offspring mobil-
ity (Sayigh et al. 1990, Smolker et al. 1993), or separation of mother and calf due to
foraging requirements. Subantarctic fur seals (Arctocephalus tropicalis), for example,
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learn their mother’s call by the time they are 5 d old, allowing them to find the
mother again after her foraging trips (Charrier et al. 2001).
We might expect vocal development to be similarly important and rapid in deep

diving odontocetes that use echolocation to forage outside the photic zone. However,
the ontogeny of odontocete echolocation is poorly studied, even in deep diving spe-
cies that rely solely on acoustic abilities within their foraging habitat. Currently only
two recordings of neonate sperm whales (Physeter macrocephalus) exist (Watkins et al.
1988, Madsen et al. 2003), and both came from stranded animals in poor health who
ultimately died in captivity. Nonetheless, there was a clear pattern in that the clicks
produced from both neonates were lower in frequency when compared to adults, a
finding which mirrors studies of echolocation in bats (Moss et al. 1997). This con-
trasts with the general pattern where call frequency decreases as body size increases
across mammalian species (Matthews et al. 1999, May-Collado et al. 2007), possibly
because it takes time to develop motor control for high frequency echolocation such
as that used by both bats and odontocetes. Across adult beaked whales (family Ziphi-
idae), smaller species do produce higher frequency signals, although this has been
suggested to be an adaptation for detecting smaller prey as much as a function of
their body size (Baumann-Pickering et al. 2013). However, there is no information
to compare echolocation characteristics or behavior in young beaked whales, of any
species, as they develop.
Here we investigated the ontogeny of beaked whale foraging search clicks using

recordings from mother-calf pairs where the calves were different ages, to discover
(1) when calves begin clicking, (2) if there is any change in the production of clicks
by the mother, and (3) if calves’ clicks are different in structure from their mothers.
We focus on the regular FM upsweep search clicks (Johnson et al. 2006), but note
that this species also makes mid-frequency broadband sounds (Aguilar de Soto et al.
2011, Dunn et al. 2013) because although the latter may be a form of social commu-
nication, they are produced very rarely compared to search clicks. Young Blainville’s
beaked whales (Mesoplodon densirostris) appear to remain with their mothers at all
times, diving and surfacing in synchrony for the same duration of time as their
mother, and have never been observed at the surface alone in our study area in 155
encounters with calves present, over 25 yr.
All data for this study were collected at the Atlantic Undersea Test and Evalua-

tion Center (AUTEC) in the Bahamas. Groups of beaked whales were detected and
tracked acoustically using a fixed hydrophone array (Jarvis et al. 2014), which con-
sists of 82 sensors spaced roughly 4 km apart (Ward et al. 2008) with a mean
depth of 1,630 m (Ward et al. 2011). These hydrophones cover an area of approxi-
mately 1,500 km2, and are single channel, with a sampling rate when digitized of
96 kHz. Sixty-eight of the hydrophones have a usable bandwidth from approxi-
mately 50 Hz to 48 kHz, and the remaining 14 hydrophones have a smaller band-
width from 8 kHz to around 50 kHz (Ward et al. 2008). Jarvis et al. (2014) used
an energy detector to identify beaked whale clicks on one or more of the array
hydrophones. The detector uses a 2,048 point fast Fourier transform (FFT) with
50% overlap, giving a frequency resolution per bin of 46.875 Hz and a time reso-
lution of 10.67 ms. The magnitude of each bin of the FFT is compared to a “bin
specific” noise varying threshold, and a detection is reported if the magnitude is
greater than the threshold (Ward et al. 2008). A shore team used this system to
track whales in real time and convey locations of groups of whales via VHF radio
to the field research team who then carried out visual observations from a small
(6.5 m) rigid hull inflatable boat.
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Acoustic recordings were made from the hydrophones that detected clicks from
the group of whales that the observers on the boat encountered. Recordings were
attributed to the whales that were sighted based on the spatial and temporal correla-
tions between recorded clicking and observed surfacing of the whales. Blainville’s
beaked whales typically surface approximately 10 min after the cessation of clicking,
and only begin clicking within approximately 10 min of commencing the next forag-
ing dive (Tyack et al. 2006). Between these foraging dives, they undertake a series of
shallow, nonforaging dives (Arranz et al. 2011), which terminate with a characteristi-
cally long surface interval before they begin their foraging dive by exhibiting a
noticeably stronger exhalation, and leave the surface with their body arching high
out of the water. This behavior allowed the boat observers to inform the shore team
when and where foraging dives commenced, prompting them to monitor nearby
hydrophones for the start of clicking. Recordings for this analysis were from all
hydrophones with sounds detected during long foraging dives.
The acoustic recordings analyzed for this paper were processed through the

default beaked whale click detector in the PAMGUARD software (http://www.-
pamguard.org; Gillespie et al. 2009), which works by assigning a threshold trigger
that selected transient sounds with >10 dB signal-to-noise ratio (SNR). Triggered
events are then passed to a frequency based bandwidth classifier that selects clicks
with energy concentrated in the 25–40 kHz band. A detection was registered when
the SNR in this band exceeded the threshold parameter. For all the clicks that were
detected by PAMGUARD, several parameters were measured automatically using a
custom Matlab R2014a (8.3.0.532) script: the –3 dB and –10 dB bandwidths,
duration, peak frequency, sweep rate, and the starting frequency of the click. The
–3 dB and –10 dB bandwidths were calculated with respect to the peak frequency
of the signal. The duration of the signal was calculated as the duration in microsec-
onds between the –10 dB points relative to the peak of the envelope of the waveform
(the D duration, recommended by Madsen and Wahlberg 2007). Since the signal is
digitally sampled, the precise point at which the envelope drops to –10 dB almost
always falls between samples. Therefore, we used linear interpolation between
sample points to estimate the time at which the envelope passed through the –10
dB level.
Beaked whale clicks used in the search mode of echolocation are frequency modu-

lated (FM) upsweeps (Johnson et al. 2004). The sweep rate of FM clicks was calcu-
lated by fitting a linear model through the maximum frequency points from the start
of the –10 dB duration period to the time of highest energy in the spectrogram of a
click, producing a 1 kHz/ms rate. Due to the low sampling rate relative to the fre-
quency of the clicks, the spectrogram had to have a small window size (24 samples)
in order to achieve enough resolution to measure the clicks’ sweep. Signals identified
as clicks with negative sweep rates were discarded from the data set because the FM
clicks of beaked whales are upsweeps (Johnson et al. 2004). Finally, to ascertain the
starting frequency of each click, a spectrogram was created with a 50% overlap and
Hamming window. Assuming an upsweep, the first frequency from all frequency val-
ues for a click was used as the starting frequency.
These measurements were combined using principal components analysis (PCA) to

provide a visual representation of the variation in click characteristics. Standardized
variables were used because of the different scales of measurement of the different
click parameters. PCA analysis was performed using the statistical software R (R Core
Development Team 2010). Recordings were audited manually to check for all sounds
incase calf clicks fell outside the detector parameters, and none were present. Due to
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the directional nature of the search clicks, the automatic detector was used to ensure
consistency in the clicks used in the PCA analysis.
Only recordings with groups consisting solely of a mother-calf pair were used in

this analysis. Blainville’s beaked whale calves typically separate from their mothers
between the age of 3 and 4 yr old in the Bahamas (Claridge 2013). Calf age was esti-
mated here using visual estimates of its length relative to its accompanying adult,
which we assumed to be the mother, sighting history of the mother, and presence of
fetal folds, pigmentation and scarring on the calf: individuals <1 yr old were approxi-
mately ½ the mother’s length, 1–2-yr-olds were ½–¾ the mother’s length, and
3–4-yr-olds were >¾ the mother’s length (Claridge 2013). For all the recordings we
also ensured there were no acoustic detections of marine mammals located within
two hydrophones of the grid of the hydrophones detecting our focal beaked whales to
ensure no other adjacent animals were vocalizing at the recording time.
Thus in these recording contexts, if more than one animal was vocalizing, it meant

that the calf was vocalizing. To determine whether multiple animals were vocalizing,
each acoustic file was visually inspected, examining waveform and spectrogram views
in Adobe Audition CS6 (4,096 point FFT with a 75% overlap and Hamming win-
dow). Times were noted for the start and end of periods of silence, periods when only
one animal was clicking, and periods when there were overlapping click trains, indi-
cating more than one animal was clicking. To enhance the detection of overlapping
clicks, each file was amplified by 10 dB. Amplification was required because often
one animal’s clicks had less energy than the other. Generally, overlapping clicks from
two different animals can be visually identified, as the interclick intervals (ICIs)
between each click are irregular, and usually there is a discernible difference in ampli-
tude. These differences arise because one animal is either closer to the hydrophone, is
at a different aspect angle relative to the hydrophone, or is producing louder clicks.
The animals produce their clicks in a narrow 13� wide beam centered on the main
anterior-posterior axis of the animal, in which the majority of the click energy is con-
centrated. Typically, such “on-axis” sound levels are 23 dB greater than levels
recorded outside the main beam (Ward Shaffer et al. 2013), and the animals also
move their head and therefore this beam, –10� to +10� throughout their foraging
dives (Ward Shaffer et al. 2013). In contrast, single animal clicks tend to have regular
ICIs and similar amplitude, or amplitude that changes gradually over a few successive
clicks, suggesting that the animal is moving its head in a sweeping motion towards
and away from the hydrophone that is recording its clicks (Johnson et al. 2006, Ward
Shaffer et al. 2013).
There were three encounters in which a mother-calf pair was recorded alone

(Table 1). In the first, the calf was a neonate, indicated by the presence of fetal folds.
There was never more than one animal clicking at any time in the recordings from
this encounter (Fig. 1). In contrast, during the second encounter, in which the calf
was around 3 mo old, the recordings contained some overlapping clicks, indicating
that both animals were clicking some of the time. The recordings from the third
encounter, with a calf between 18 mo and 2 yr of age contained the largest percentage
of overlapping clicks (Fig. 1). The age estimates of the calves are necessarily imprecise
and drawn from inference based on knowledge of calf development in this population
(Claridge 2013). The age of the 3-mo-old calf was estimated using characteristics seen
in calves known to be this age. The 18-mo–2-yr-old calf was estimated to be this age
as it was seen with its mother 14 mo previously and was between ½ and ⅔ of her
length at that time. Based on other animals in the photo-identification catalog of this
size and known ages, the calf was estimated to be between 6 mo and 1 yr of age at the
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time of the earlier sighting and hence 18 mo–2 yr when recorded for this study. The
encounter with the greatest percentage of silence (i.e., neither mother nor calf click-
ing) was when the calf was a neonate, followed by the encounter with the oldest calf,
and the least amount of silence was from the encounter where the calf was around 3
mo old (Table 1). Although the encounters had recordings of different durations,
with the second encounter not having recordings from the entire dive period, there

Table 1. The data set used for analysis, detailing three encounters, each with a different
mother-calf pair, and ordered by the estimated age of the calf, the date of the encounter, the
duration of the visual encounters and recordings, the number of clicks detected by the PAM-
GUARD detector, and the number of hydrophones that recorded vocalizations during each
encounter.

Reference Age of calf Date

Duration
of visual
encounter
(minutes)

Duration of
recordings
(minutes)

#
Clicks

#
Hydrophones

1 ~1 wk 1 October 2008 41 45 117 4
2 2–3 mo 25 July 2012 62 11 61 2
3 18 mo–2 yr 1 October 2008 28 37 2,259 5

Neonate 2 3-mo-old calf 18-mo 2-yr old calf
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Figure 1. Percentage of time during recordings of three mother-calf pairs with calves of dif-
ferent ages, detailing no clicking, one animal clicking, or both animals clicking.
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Figure 2. PCA scatterplots of click variables from the three mother-calf pairs.
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still does not appear to be any evidence to suggest Blainville’s beaked whales increase
call production postpartum as has been illustrated in other species.
The removal of negative sweep rate clicks for the PCA analysis required dropping

a single click from the first data set, six from the second, and none from the third.
The PCA of the click parameters in each of these encounters showed no distinct clus-
ters in the data (Fig. 2) that might correspond to two distinctive populations of
clicks, such as would be expected if calf clicks were very different to adult clicks. We
assume the single animal clicking from the first data set is the mother and not the
calf, due to her need to forage. Therefore if Blainville’s beaked whales are not vocaliz-
ing immediately after birth, it appears that when they do begin to vocalize their anat-
omy is adequately developed to produce echolocation clicks that are similar to adults.
These results are similar to those reported for both dolphin and porpoise calves, where
dolphin calf echolocation was indistinguishable from adults at postnatal day 40, as
was a neonate finless porpoise’s first recorded click train (Reiss 1988, Li et al. 2007).
The first two principal components explained between 50% and 66% of the varia-

tion for the three groups, with the –10 dB bandwidth variable being the dominant
loading for PC1 in two of the data sets, and sweep rate in the other one (Table 2).
Our recordings provide the first insight into the vocal behavior of female beaked

whales with accompanying calves. Our results suggest that Blainville’s beaked whales
may not be producing upswept search clicks as neonates, presumably because they are
entirely dependent on nursing, although we cannot rule out the possibility of a false
negative result due to the small sample size. Nonetheless, we did confirm calf vocal-
izations by around 3 mo of age. These results match other studies on the ontogeny of
echolocation, where two dolphin calves and a finless porpoise calf were not recorded
echolocating in captivity, presumably an environment with a better chance of detect-
ing vocalizations, for their first 3 wk postnatal (Reiss 1988, Li et al. 2007). Blain-
ville’s beaked whale calves are proportionally larger at birth relative to their mothers
than sperm whale calves (Huang et al. 2011), which presumably helps make them
more capable of diving with their mothers immediately after birth. Our observations
suggest that they dive in synchrony with their mothers, even as neonates, and recent
data on diving behavior from satellite transmitter tags also indicates that the mother
of a dependent calf dove with similar frequency and to similar depths as females with-
out calves ( JD, unpublished data). As neonates are not vocalizing immediately after
birth, they may be eavesdropping on their mothers’ clicks and therefore the vocal
behavior of both mothers and calves may allow the calves to follow their mothers dur-
ing foraging dives shortly after birth to minimize the time that the calf is alone at
the surface and vulnerable to predation.

Table 2. The proportion of variance and loadings from PCA for three mother-calf pairs’
click parameters.

Group PC
Proportion
of variance –3 dB –10 dB Duration

Peak
frequency

Sweep
rate

Starting
frequency

1 1 0.48 –0.22 0.55 0.47 0.36 0.49 0.26
1 2 0.18 –0.66 –0.16 –0.06 0.48 –0.11 –0.54
2 1 0.35 0.50 0.64 0.02 0.21 0.47 –0.27
2 2 0.21 –0.07 –0.03 –0.34 –0.69 0.59 0.24
3 1 0.29 –0.25 0.43 0.41 0.46 0.58 0.20
3 2 0.21 0.70 0.53 0.10 –0.38 0.20 –0.18
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